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< New York Universityt
PEREEOGOT,
wl L. Introduction
< In this paper an analysis is made of the reflection of  pulse of so'nd from

a noint source in 8 non-abeorbing liquid plane boundary, under the circumstance
that the index of refraction is <1. The analysis is equally applicable to the
total reflection of electromagnetic radiation from a vertical dipole, in the absence
of absorption. The results clarify the mechanism of propagation of the head
wave which has been observed in acoustic experiments. It is ahown without
approximation that 3 pulse is received in the first medium at a time correspond-
ing to propagation along the surface with wave velocity of the second medium.

Under certain circumstances a pole in the complex plane of integration
makes a contribution to the field at long distances. However the pole always
lies on the imaginary exis for non-absorbing medis, giving rise to an exponen-
tially decreasing term si long distances. Thus no true (undasmped) surface
waves can occur. The comtribution from this pole is absent in the electro-
magnetic case when, as is usual, the magnetic permeabilities of the two media
are equal.
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Figoaz 1

Figure 1 shows a point source at P, a height A above an infinite plane

*Contribution from the Beripps Institute of Oceanography. This work represents one of
the results of research carried out under contract with the Bureau of Ships, Navy Departmect.
{Prevent address: Department of Physics, University of Pittsbargh.
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74 EDWARD GERJUOY

surface separating two non-absorbing media. The wave velocity is greater in
medium 2 than in medium 1. The signal is received at S, a height £z above the
bounding surface.

Let the source be harmonic, of circular frequency w. In the acoustic case,
when both media are liquids, the acoustic potertials ¢, and ¢, satisfy in their
respective media

Ad, 4+ k’¢n =0,
(1)
8¢y + kxps = 0

with the boundary conditions, on the plane z = 0
P = pydy,

%, _ %
oz o2

In these equations p denotes density, ¢ wave velocity, and k = «/c,
In the electromagnetic case, when hoth media are non-conducting, and the
source is a vertical dipole, the Herts potentials », and r, satisfy (1]

Ar, + kix, = 0,

()

(3)
Ar, + k:ﬁ =0

with the boundary conditions, on the plane z = 0

@

In equation (4) p is the magnetic permeability. It will be noticed that when
1 = py the electromagnetic problem is leas general than the acoustic, gince the
ratio of the coefficients of », and , in the first of equations (4) ia k}/k3 = c3/c} ,
whereas p,/p, is independent of ¢,/c, .

The field in medium 2 has been discussed previously (2], in this paper the
field in medium 1 will be analyzed. In the main our results confirm those of
previous investigators [3] but some new features are introduced, to wit: (1)
The time of arrival of a pulse is evaluated exactly, and shown to agree with the
conclusions inferred from the approximate evaluation of the field from a harmonic
source. (2) The validity of the method of stecpest descents in this problem is
examined by evaluating the next higher approxiraation, and a number of the
conditions for the validity of the method are shown to have simple and natural
physical interpretations. The amplitude dependence of the head wave is also
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given a simple geometrical interpretation. The head wave denotes the wave
which in the region of total reflection arrives before the reflected wave, and may
arrive before the directly transmitted wave.! (3) Under certain circumstances
a pole lying on the imaginary axis in the complex plane of integration makes a
contribution to the field, yielding an exponentially damped wave at long dis-
tances in medium 1. The circumstances are such that the poie makes no contri-
bution in the electromagnetic case when u; = u,. The contribution of this pole
does not seem to have been previously remarked.’

II. Notation and Basic Formulas

We employ our previous notation: the acoustic potential at S (Figure 1)
with the conrdinates (z,y,2) is

(5) ¢,=¢o+¢.=¥°§’—gk—'m+¢.,
R is the distance PS (Figure 1), and the reflected wave ¢, is

® 6=k [ du s T e like + DVT =W,

BV1 —u' — Va —u’
(7) fv ﬂ\/l _;’+ \/;a_ui'

In equations (6) and (7), r = (z* + ¥*)'?, @ = ¢,/¢, is assumed <1, 8 equals
pr/py (Aacoustic) or u,a’/u, (electromagnetic), and may have any positive value.
Equation (7) for the reflection coefficient f, is equation (10) of reference 2.
Equation (6) follows readily from equation (6) of reference 2 by the procedure
used to obtain equation (13) of reference 2. Details of the derivation of equa-
tion (6) are also given by Ott [3). The correct behavior of the solution at in-
finity in either medium is guaranteed by choosing Vo' — «* and V1 — &*

Buch early arriving waves have been obacrved in geophysical prospecting by explosive
sounds (cf. Muskat, ref. 3), and, in underwater propagation by J. L. Worzel and M. Ewing,
Ezploeion sounds in shallow water, Geol. Boc. of Am., Memoir 27, 1948.

30 the authors iisted in reference 3, Lamb solved not the problem under consideration
here, but some related problems. Jeffreys uses operational methods throughout. Muskat
obtained o valid formal solution, but evaiuated the resultant integrals by means of a relatively
cruds approximation. Ott's analysis parallels our own but ke does not follow the steepest
descent contours in the complex plane with the care which we have used. In essence our
evaluation of the integrals confirms Otit's results, but extends them by including the small but
thooreticaliy interesting contributions from the pole. Kruger evaluated the integrals without
using the method of steepest descents, for the electromagnetic case. However, his analysis
is immediately applicable to total reflection only when A = 0, and uses the restrictive assump-
tion that w1 = xy . Brehovakih’s work, in Russian, seems to parallel ours, but he makes no
mention of the pcie,
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positive real for small positive u and positive imaginary for large positive u.
The choice of sign is achieved by drawing the cuts through « and 1 upward, as
shown in Figure 2. It will prove convenient to draw the cuts through —a and
~1 downward as shown; for the purposes of tkis section their directions are
rot significant. The contour of equation (6) runs from @ to = on the real axis
without crossing any of the cuts. For z+h > 0

exp ik, VP + (z + 1)’}
VPP + @+

(8)
- ° ——! — g (! - 7 == 3
j; dt \/P———,— x JO(.‘ .) exp ‘ (z -+ h) 4\/- LnL

% 4 Z; a,

wwYTY -
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Equation (8) is well known; it implies that the real part of v/ — k! is always
>0 on the contour, (cf. Stratton {5j) or equivalently, that the contour passes
below the singularity at ¢ = k, (cf. Watson [6]). Letting ¢ = k,u in equation
(8), remembering k, > 0, and noting that Vil 1 = —iv1 = o is ron-
sistent with the definitions of the signs of the radicals in equations (6) and (8),
it can be seen that

(9) ¢ =% t+e¢ +4¢,

_e* 8+ n/d - vVa - 7
19 e d [ﬁ(z 4+ h/d 4+ Va - ,]’

an o =2k [ du s POk emp (ikie + DVT= W),
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(12) Flu) = Va — 71 _ \/_a —u
BVI -2+ Vele=—7 B8V1I—-uw+ Vo -

(13) d=Vr+@e+h, r=r/d, \/l—ri,z:h.

The distance between the receiver and the image of the source isd = P'S
(Figure 1); 7 is the aine of the angle of incidence TPP’ (Figure 1). In equation
(7) u equals the sine of the angle of incidence (see [Z]); equations (6) and (11)
are integrals over real and complex angles of incidence. The amplitude and
phase of ¢, are precisely those expected for = spherical wave propagating along
the scometrically reflected ray PTS (Figure 1), if we assume this wave to be
reflected with the plane wave coefficient of equation (7), with u = r. The sign
of Va®— 7 isidentical with that of v/a® ~ u” when 4 = r. We infer therefore
that sll deviations from ray or geometrical propagation are contained’ in the
term ¢, .

The poles of the integrand of equation (11) lie at the roots of

(14) BV1I—vw 4+ Vo' —u' =0
or at
3\ 1/3
u= 4 ﬁ‘ :al) 5 1 <8,
(15) u = %14 f%;:)m, a<p<l,
s _ 1/2
u= :!:(‘;——_—g;) y B <a.

In that part of the complex plane which is above the real axis, we denote
by I the region to the left of the cut at a, by II the region between the cuts at
a and 1, and by III the region to the right cf the cut at 1. Since the cuts may
(and will later) be drawn so that they intersect the positive imaginary axis, we
further distinguish between region I, , containing those points in region I which
lie in the first quadrant of the complex plane, and I, , containing those points
in region I which lie in the second quadrant, and similarly for regions II and
III. The fourth quadrant is designated by IV. Some of these regions are
shown in Figure 2. Inregionsl,, I, ,II, , III, , and IV the real and imaginary
parts of (1 —u")'?, (a’ — 4")"?, and u/(1 — u’)'”* are negative in the following

This formulation, in which ¢, = 0 in the geometrica! limit k; — = appears more logical
than the customary procedure of ignoring the dependence on a, 8, and angle of incidence of the
reflection ocoefficient, whereby the field in medium 1 is regarded as the sum of spherical waves
radiating from sources of equal strength at P’ and P’ (Figure 1), plus s contour integral, which
integral is not sero in the geometrical limit. Cf. Stratton, op. cit., p. 578 1., or Ott, op. cit.
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regions:

®e (1 —u")'"* <O: 111,

em (1 — 4" <0: 1,11
- ®Re (" — u")"? < O: IL, , IT., III,
(1Y)

sm@ — )" <0 1,11,
(“e u/(l - u’),,’ < 0: I’ ’ II’ ’ III|
smu/(1 — )" <O0: III, , IV,

Othcrwise they arc positive. The real and imaginary parts of the radicals
change sign discontinuously at the cuts but become zerc on the real or on the im-
aginary axis if they change sign crossing it.
Equaiicns (16) show there are no roots of equation (14) in region IV. Con-
sequently, as shown foi similar integrals by Muskat and Ott [3) we obtain
u

(17) ¢, = ik, j; du ‘\/-l——:i F(“)”é‘)(klm) oxp {ikz + V1 - u').

The contour C of equation (17) runs from 1 to « on the real axis, as shown in
Figure 2. Replacing H" by its asymptotic expansion, equation (17) becomes

a8 o= () e [ al72) R e tikaw),

(19) Aw) = ¢+ HV1 — & + ru.

In equation (17) —x < arg 4 < ». To prevent circling the singularity at the
origin, the cut at —a 18 extencled to the origin along the negative real axis as
indicated by the stippling in Figure 2.

We evaluate ¢, , equation (18), by the method of steepest descents.* There
are two distinct cases: r < a, considered in the immediately following section
ard r > a, which is deferred to section IV,

IIL. Solution for t < a

The saddle points of the integral (18) lie at the roots u = =7 of the equa-
tion A'(u) = 0, with

i (z + hu
m A — -— —_—
(20) w=r e
We shall be concerned only with the poini u = r, which for r < aliesin I, .

A(u) is pure reel on the real axis between 0 and 1, and, in I, , has & maximum
at u = 7. Along the contcur ®Re A(u) = A(r) throughu = rin I, , sm A(u)

‘Wataon, op. cil., p. 2.
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can have no maxima and but a single minimum, at u = r. Evaluation of ¢, ,
equation (18), by the method of steepest descents now proceeds in the usual way.
To completely justify the analysis however it is necessary® to make sure that it
is possible to deform the contour C of Figure 2 into the contour e A(u) = A(r)
passing through 4 = rin I, .

The argument required is similar to that employed previously. Use is
made of equations (16) and (20), together with the remark that the contour
is parallel to the imaginary (real) axis if and only if A’(u) is pure real (imaginary).
If u = pe”, then in III, and IV, for large »

@n A(u) = pf[rcos & ~ (» 4+ h) sin 8) + ¢[(z 4+ k) cos 6 + rsin 8]}
while in [, and I, , fer large p
(22) A(u) = p{lr cos 8 4+ (z 4 h) sin 8] 4 ¢[rsin § — (2 + h) cos 8}}.

It can be seen from equation (16) that the only roots of equation (14) which can
possibly concern us lie in region II. We can conclude that the contour C can
be deformed into the contour ®Re A(u) = A(r), which we denote by C’ (Figure 3),
without croesing any poles.

We recall that u is to be interpreted as the sine of the angle of incidence of
an arbitrary ray from the source. The equation u = 7 for the saddle point of

A ] z, m,
\
N 3
i e S
fon F Y . F Y] as
i x
Filaure 3

equation (18) corresponds therefore to the assertion that the deviations from
ray propagation are in this case, r < a, determined primarily by radiation along
the direction of the expected geometrical path. This interpretation is confirmed
by the fact that exp {ik,A(r)] = exp {ik,d] is a phase factor common to ¢, ,
equation (10), and to this estimate of ¢, . Moreover since F(u) = 0 atu = r,

"This point has not always been sufficiently emphasized.
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80 EDWARD GERJUOY

¢, i8 seen to be small compared to ¢, (in the limit of high frequencies and large
distances, where the method of steepest descents is applicable). These results
are in coruplete agreement with those of Ott (3].

IV. Solution for t > «

When r > « it is necessary to deform the contour into the shape C; followed
by C, of Figure 4 in order to obtain a convergent contour integral through the
saddle point u = r. We write

(23) ¢ = ¢,(C,) + ¢1(C:)

where ¢, i8 given by equation (17), and both ¢.(C,) and 4,(C,) are given by
equation (i7) with the substitution of C, or C, for C. Replacing Hg" by its
asymptotic expansion, ¢,(C,) is given by equation (18) with C, instead of C.

Iy I, z, &,

G o

Fiourz 4

Since vVa® - u® does not occur in A(u) the argument in the preceding section
concerning the determination of the contour Re A(u) = A(r) i8 wholly un-
changed, except for the fact that the contour extends to infinity on the left in
I1, instead of I, . The only question to be settled is whether deformation of the
contour requires crossing any of the polesin II. This question will be considered
below. Except for poesible contributions from poles in II the integral ¢,(C,)
in seen to yield precisely the same results as did ¢, in the preceding cction. The
contour into which C, is deformed is termed Cj} .

We proceed to ¢,(C,): The first term in F(u), equation (12), is merely a
constant. Referring to equation (17) and to Figure 4, it is evident that in ¢,(C,)
the contour C, can be closed at infinity for this first term in F(u), since the integral
containing this term contains no terms involving v/a® — w'. Nor does it contain
any poles. Consequently the first term in F(u) results in a vanishing integral
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and we have
2 2
0 u vV - U
¢,(C‘) = —tk| a

d _— . —_— —
¢ = V1=-4WB8VI—u 4 Ve =4

- exp {thi(z + h) V1 — @I H (kiru).

In%11, the contour C, lies along the cut. The contour C, can be deformed so as
to lie along the cut in I, , s.nce there are no polesin I, . Because the integrand in
equation (24) vanishes &t u = « the integral around a small circle about 4 = «

is zero. It follows that
du uva — u
Cs 5'(1 - u’) - (ai - u’)

- exp lik(z 4+ V1 = FIH (kaw).

In equation (25) tkL2 contour C, runs in II, along the cut, starting at « = a
and going to infinity.

We desire the “best” contour for the branch line integral $,(C,); namely
a contour which appears likely to minimize the error. Although no saddle
point can be found for ¢,(C,), it is very reasonable to deform C, into & contour
along which the phase of the integrand remains constant. Such a steepest
descent contour, whether or not it passes through a saddle point, still seems
least likely to introduce complicating cancellations and reinforcements, par-
ticularly in the large k,r limit (in which we are ultimately going to be most
interested).

Consequently an approximate expression for ¢,(C,) is obtained much as
before by replacing H;'' in equation (25) by its asymptotic expansion, and
determining the contour ®Re A(u) = 4(a) into which the cut through a must be
deformed. Only if this deformation of the contour requires croesing any of the
poles in 11 must their contributions be considered.® The contour ®Re A(u) = A(a),
which we term C7 , is shewn in Figure 5 where the cut through a has been de-
formed so that it coincides with C; . The deformation ir justified as in the
preceding section. The integral along C] is computed, as in the method of
steepest descents, by expanding the integrand about the point 4 = a. The
final result is an expinszicy for the head wave:

2 l‘ e“|'

(24)

¢l(Cl) o —2'.’:]

(23)

(26) ¢I(C:) = klﬁ(l _ aﬁ)l/( ;rlilr(l . a’)l/l — (Z + h)a]’"
and
27 v=Gc+hNV!-a+mn.

‘It in definitely not correct to try to evaluate the integral along an arbitrary contour
between a and . The axant value of the integral is independent of the choios of contour, of
ocourse. But because the integrul is not evaluated exactly, the estimated value of the integral
can depend on the choice of contour, as apparently ' appens in the Sommerfeld problem.
T. Kahan and Q. Eckart, Jour. Phys. Rad., 10, 165 (1949) and Phys. Rev., 76, 406 (1949).
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Equation (26) shows that in the limit of high frequencies and large distances the
amplitude of ¢,(C}) is small compared to ¢, , equation (10). This was to be
expected, since ¢,(C}) is part of the deviation from geometrical propagation.

We return to the problem of whether or not poles are crossed. It is apparent
from the above discussion that we might just as well have deformed the contours
to C{ and C; before replacing H;" by its asymptotic expansion. Figure 5
illustrates some intermediate stages in the deformation of the contour C of
Figure 2 into integrals along C! and C; and shows the cuts through ¥ = —« and
u = 1. The ccntour C; coincides with the cut through « and is drawn stippled,
as is the cut from u = —a tou = 0. The portion of C; to the left of u = 7 is
also shown. Pegions I, and I, lie below and to the left of C{ . In Figure 5 the
contour C has been bent around into region II heiween Ci and Cj , but has not
yet been extended to infinity. The dotted line 18 a deformation of C which
has not crossed the imaginary axis.

Fravre &

Referring to equation (15) it is clear that if 1 < g it is possible to extend
to C in Figure 2 to the dotted C in Figure 5 to the solid C in Figure 5 and so on
to infinity in II, , without crossing any poles. When 8 < a the poles lie on the
real axis between —a and « in region II. Thus C can again be deformed to
infinity in IT without crossing a pole. For a < 8 < 1 the poles lie on the im-
aginary axis; the only root of significance is the positive imaginary root in II.
Let u = 1y, (1y,) at the intersection of C{ (C;) with the imaginary axis. If the
pole lies at y, > y, (Figure 5), the contour can obviously be deformed from the
dotted C to the solid C without crossing the pole, and so on to infinity. If the
ordinate of the pole is <y, , the pole lies below the cut C{ , and is again never
croesed. The only case that remainsisa < 8 < 1, % <y, < ys, a8 illustrated
in Figure 5. In this case the contour cannot be extended from the dotted C to
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the solid C without crossing the pole, so that to the integrsl 2long the solid C
must be added the integral around the closed loop surrounding y, ; this integral
readily yields

- o)t

8p) = 4k [T —%hm exp Likl(e + WXL — 2)7/(1 = 8]

- Kolkir(8* — o) /(1 — £)').

¢:(p) is the contribution from the pole and in this case where a < 8 < 1,
¥ < Y, < y» we have

(29) ¢(C) = ¢.(p) + :(CD

where ¢,(C1) is still given by equation (20). In equation (28), K, is the modified
Hankel function. The condition y, < y, < ¥, can be writter as

(28)

.o _ . nU/3 nx 1 — a’)”’ _d_
(30) (1 -a) +z+h<(l_3, < I
We have been unable to interpret ¢,(p) physically. Since for large z
173
(31) Koz) ~ (zl,,-) e

¢.{p) decreases exponentially for large r, and therefore can hardly be interpreted
as a surface wave in this problem which neglects absorption, despite the r~'”*
spreading factor inferred from equations (28) and (31). It is likely that at large
distances the magnitude of ¢,(p) is small compared to the error made in deriving
equation (26). It is poesible that ¢,(p) is a portion of the difference between the
accurate and asymptotic value of ¢,(C,), or it may be a spurious result of the
analysis. All that can be said is that our choice of ‘‘best’”’ contour C| leads
naturally to ¢.(p) when a < 8 < 1 and equation (30) is satisfied. In the electro-
magnetic case when g, = u, , we have 8 = ', s0 that a < 8 < 1 is not possible
under these circumstances.

V. Geometricul Interpretation

In this section we assume the head wave propagates from P to S along the
path PABS (Figure 1) with velocity ¢, along A B, and show that this assumption
leads to simple geometrical interpretations of the results of the preceding sections.

In Figure 1

(z + ha
32 AB =y — ¥ T &
(32) r A

Muskat [3] has pointed out that the phase diffcrence between P and S corresponds
to the assumed propagation, i.e., referring to Figure 1, that

(33) k(PA) + aki(AB) + k\(BS) = k¢

e e ——— s — % — J— A ot g

e anali T e
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holds with y¥ given by equation (27). He also remarks that PABS is a path of
least time, in the sense of Fermat’s principle. The surfaces of constant phase
¥ = constant intersect the z.z-plane of Figure 1 in lines parallel to USW and
perpendicular to BS. The wave fronts, obtained by rotating USW about the
z-axis, are obviously cones with axis OP. These cones have an angle = XCSW =
the complement of the critical angle.

Consider the two neighboring rays BS and B’S’ intersecting the wave
front USW (Figure 6). Rotate the section BSS'B’ about OP. All the energy

mediom |
P v
rtr N\ N\
P v

Figure 6

lying within the volume formed thereby which in unit time crosses the surface
formed by rotating SS’ ultimately crosses the surface formed by rotating VV’,
V and V’ being intersections of BS and B’S’ with the neighboring plane of
constant phase U’VW’. Calling the pressure at S p(r,z) and at V p(r+drz-+dz)
and noting that SS’' = VV’ we have

(34 2xrp’(r, 2) = 2x(r + dn)p’(r + drz + d).

Equation (34) implies that for poinis on the same ray BS, p is proportional to
r~'”* and independent of z. This is precisely the result yielded by equation
(26) from which, using equation (32, $,(C}) is proportional to (AB) *?'?,

Clearly equation (26) becomes grossly inaccurate’ as AB approaches zero
length, since the solution must be finite at all points other then P. In Figure
6, S’/ is a point in the field receiving the head wave via the ray B”’S”. B”M is
the wave front starting at B’”. It tcrminates abruptly at M, since the critical
ray PA is reflected into AML and since there is no refracted wave along the
surfiace to contribute to the head wave at points on the surface closer to the
origin O than A. We may expect our assumption of propagation along PABS
to be valid, and equation (28) to be a good approximation, as long as B""M
subtends a large number of Fresnel zones constructed from point S”. In other

"Brehovskih, see (3], by a different method obtained instead of equation (26) & modified
expression which be claims accurately represents ¢,(C}) for small or sero values of AB.
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words it is necessary that
S"M - S'"B"!

(35) Y >1
when S"’B” > M B’’; equation (35) simplifies to
(36) (1 = a)(A4B)' » 22/ V1 = a'.

Equation (26) is the leading term in an asymptotic expansion of ¢,(C,),
presumably valid in the Uinit as k;r = . For finite k,r the ratio of the next
term in the asymptotic expansion to the leading term, equation (26), furnishes
an estimate of the error made in using eaua .ion (26) to represent the head wave.

VB mcvenéinm 7OEY
ALL ‘-\1““\':\/“ \HV/
. " ( 2 )‘“ . ( a )
37 o (kyru) = k) O (i wru — =x/HI\1 + Stk

where | A | < 1. If in equation (25), we ignore thLe term in 4, introduce the new
variable 5 which runs from 0 to » as u traverses {'! from a to =, and expand
the terms in the integrand exclusive of the exponential terms in a power series,
we obtain

4illk:nlf/’ e(l.‘
2781 — o) (1 = &) ~ (2 + h)a]”

¢l(C;) =

38) -
3 j; dv e-!hd,’!/’(l + i’,& + ...).

The leading term in equation (38) yields equation (26). In equation (38)
8= ,38,7 =114, where the &, are defined as follows: Forj = 1 to 3,

(39) Ql = Bill + 5:‘("’1) + - ]

the functions Q, , j = 1 to 3, being respectively u'”?, [8'(1—v®) — (a’—u")]7,
and —idu/dy. &, is defined by

(40) @ —u)"? = Bin'’[1 + (i) + ---).

In equations (39) and (40) the B, , j = 1 to 4, are numerical coefficients.

In equation (38) the absolute value of the ratio of the term in & to the leading
term is 35/(2k,d), which must be «1 if equation (26} is to be accurate. The
expression 35/(2k,d) where two or more of the 35,/(2k,d) are large can sometimes
be made «1 by cancellation; such cancellation is seldom poesible in the omitted
term of equation (38), of order 5’ in the integrand, whose ratio to the leading
term will be ~8}(k,d)>. We conclude therefore that it is probably necessary
that eech of the 33,/(2k,d) be «1, in order that equation (26) be accurate.

The inequality corresponding to j = 3 is

3@z + h)
(41) 2(1 — a')"’k,(AB)’

« 1.

tWatson, op. oit., p. 219,
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It is a confirmation of our geometrical interpretation that equation (41) is
equivalent to equation (36). Apparently the geometrical approximations in-
volved in deriving equation (36) implied 2 > h. That the right hand side of
equation (36) should depend on (z 5 A) can be inferred from equations (6) and
(11) which show that ¢, and ¢, are functions of z and A only through the sum
(z + h).

We may add that in equetion {25) the contribution of the term in A can
be estimated by expending that term in a power series about ¥ = a, leading to
the inequality 8%,ra 31, a typical condition for the validity of geometrical
propagation. Some of the inequelities 38,/(2k,d) <1 imply

3 r
(42) Em < 1.

We have not interpreted equation (42). It can be inferred from 34,/(2k,d) < !
that (1 — a) and 8 must not be too close to zero, conditions to be expected
from equation (26), since ¢,(C,) cannot increase indefinitely as (1—a’) and 8
approach zero.

VL Solution for Complex o

To this point we have been concerned with positive real k, and k, . To
determine the received signal resulting from a pulse, we require the solutions for
mmplov values nf . where §m > 0. We retain k, = w/Cl ’ ka - w/% O and
¢; real. The previously adopted means of obtaining the solution, based on the
expansion of e'**/R in plane waves as first used by Weyl {7], would in the present
case’ involve divergent integrals. We can follow Sommerfeld (8] however;
by analytic continuation it can be seen that equation (8) is correct with
(h + z) > 0, in the extended range r > G, 8m k, > 0, where ®e /2 — k3 > 0.
The value of /¢ — k: at points * < k!, k, real, is determined by continuation
of V¢ — ki from the upper half plane sm k, > 0. We note that Re V& — ki
cannot change sign, as k, is varied continuously for fixed ¢, unless gm k, becomes
zero, and that the integral therefore converges, with V¢’ — ki as defined, for
r = 0and/ork, = 0.

Using equation (8), with (A — z) replacing (b + z), 80 a8 to represent ¢, ,
equation (5), we can, as does Sommerfeld, obtain a solution for complex k, . In
fact, letiing ¢ = k,u in equation (8) and the other relevant integrals, the solution
in medium 1 is given by equations (5) and (9)-(13), except that the contour for
é: , equation (il), now runs from 0 to « along the line arg 4 = —arg k, . The
cuts through ¥ = 1 and ¥ = q, formerly through ¢ = k, and ak, , approach
infinity along arg u = (x/2) — argk, . Thecutsthroughuy = —landuy = —aq,

*The plane wave expansion of ¢** /R appears to us to invoive divergent integrals in
medium 2 whenever k, is complex even with real k, . When k, is complex, for any z and y,
there are values of the czimuth angle ¢ in equation (12) of reference 2 for which the integrand
becomes infinite ag # approaches its upper limit of /2 — s <. This difficulty does not secm to
have been remarked by later writers, o.g. Ott.
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which were downward in the t-plane, approach infinity aloag arg v = —(x/2)
— argk, . With these provisos, equation (11) can be scen torepresent an analytic
function of &, in the entire range dm k, > 0; as always, k, = ak, , « < 1. This
result is most important. Knowing the solutions are analytic functions of k,
enables us, as in the next section, to extend integrals over « into the complex
w-plane. If k, = pe’, 0 < 8 < =, the behavior of ¢, , equation (11), for fixed r
and z as p — o is determined by exp | —p(h+2)[sin 6 Re V1 —-u + cos 8
gm /1 — u’]}. The signs of Re V1 — u’ and §m V1 — «’ are found by
analytic continuation of their values in equation (16), as the cuts of Figure 2
are rotated clockwise. It follows that sin 6§ ®Re V1 — u* + cos 8 9m V1 — u?
i8 positive for all u on the contour arg u = —arg k, , and consequently that
equation (11) approaches zero exponentially as | k, | ==, 0 < argz &, < =.
Moreover, for k, real, it can be seen that ¢,(—k,) = [¢,(k))], the bar denoting
complex conjugate. This result was of course to be expected since ¢o(—Fk) =
&o(k) and the differential operator A* 4- &} is real for real k, .

Using Cauchy’s theorem, we may now infer rigorously the result that if

a>0,b2>0, 5

(43) $(—a + ib) = ¢.(a + 1b).
We write

(44) sk = 5 [ HedK)

2niJ K-k’

the coutour being the real axis from — ® to « and then around the circle at
infinity in the positive k; = K-plane. Equation (44) is justified by our demon-
stration that ¢, is analytic in the domain, and equation (43) follows at once if
we not: ihn: the integral over the circle at infinity vanishes since ¢, has been
shown to become zero exponentially on this circle.

The form of the sviution so far obtained is awkward. It is more convenient
to introduce 2J, = H{" + H,» asin Section II. This is not possible if r = 0
gince H¢''(0) is not defined. Restricting ourselves to values'® of r > 0, it is then
easy to show using H' (k,ru) = —H{"(k,rue'”) that equation (17) remains
valid and 18 an analytic function of k, , provided the contour C of equation (17)
runs from infinity to the origin along the line arg 4 = » — arg k, , and then from
the origin to infinity along the line arg u = — arg k, . The limits within which
the contour can be deformed can be inferred from equations (21) and (22),
which remain valid, provided 9 is interpreted as arg k,u instead of arg u. In
III; and IV then, the integrand approaches zero exponentinlly as u — o if

¥(Obvioualy, in justifying equation (17) (cf. Section II) we should have stated that r > 0
but the fact that our formulas involving HS'’ are not valid for r = 0 is of little moment. It is
important howevar that a valid solution from which the fields at r = 0 can be evaluated for
any k, is available (in principie, at any rate), that the analyxis for r > O yields formulas which
can be understeod and used almost everywhere, and that there is no reason either from the

physical proprties or from the appearance of the formal solution to expect unusual results on
the liner = Q.
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(¢ + h)cos 6 + rein 6 2 0, or it may be deformed from its original arg k,u = 0
anywhere within the limits

(45) ~tan EEP < gk, +argu < v — tan 2R
In I, we have from equation (22)
(46) tan"z+h<argk,+&rgu<r+tan"z——-:‘-h.

In equations (45) and (46)

0 < tan <I

2
The inequalities hold up to and including the limits; i.e., < is correct, if | k, | > 0,
as can be seen by substituting the values of arg k,u at the limits in equations
/21) and (22). It will be found that ®e A (u) is not zero at these values of arg k,u,
so that equation (17) converges as p — .

These results will be used in the following sectlon

VIL. Reception of a Pulse
Suppose the wave radiated by the source at P (Figure 1) is given by

47 a0 = L 1(e - &)

C

-|Z+h
r

where R is the distance PS and f(z) = 0 forz < 0. The function f(z) satisfies
sufficient conditions for the existence of a Laplace transform, hut is otherwise
arbitrary. In particular f(z) satisfies the condition that the integral from
0to = of | f(z) | exists. Then f(z) can be written in the form

(48) 1@ = o= [ doe " gte)

where g(w) is a one-valued regular analytic function of w in the entire half plane
fimw > 0.

It follows, as is well known, that the solution in medium 1 is given by
equation (5) where now

(49 () = o [ doe oo 0)

with ¢,(w) = ¢, of eq. (6). The functions¢,(w) have been derived forall sgmw > 0
in the preceding section. In particular ¢,(w) may be replaced by equations
(9)-(11). The term ¢,(w) yields a wave which is received at a time ¢ — d/¢, and
which duplicates in ehape as a function of time the shape of the original wave
éo(t). This is also a well known result, and is demonstrated by the usual means

i st wii e el
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of closing the contour in the upper w-plane. We still have to examine equation

(50) i) =L [ dwe g

which contains all the deviations from geometrical acoustics. From the previous
section ¢,(w) is known to be a regular analytic function for any z, r when dm w > 0.
Since g(w) is also aralytic and regular, the contour may be deformed at will in
the region sm w 2> 0.

Deforta the ccrntour so that it makes a smali Lalf circle about the origin.
This is done to avoid the cifficulty k,r = 0. Assume r > 0. Then, in equation
(50), ¢.(w) is given by eyuations (17) and (43) with the contour C(k,) defined as
in the previuus sectior, !3ing within the limits of equations (45) and (46). We
shall now show that whnen r < a the integral, equation (50), is zero over the
infinite haif circle at infinity in the upper w-plane, sm « > 0, whenever
t — d/e, < 0. Consequently by Cauchy’s theorem ¢,(f) = 0 whenever
t—d/e, <0,ifr < a.

We consider first the quarter circle at infinity 0 < arg v < x/2. For
any k, in this region, k, = w/¢, , ¢, real, the contours C(k,) can be deformed to
the contour ’ of Figure 3. In order that this deformation be possible, according
to equations (45) and (46), it is only necessary that

(51) tsn"'+h<mgk,+tan“——sr tan"""—h
+h r

and

(52) tan"z+h<argk‘+r tan™ +h_r+tan'z-:_-h.

Equations (51) and (52) are satisfied'’ provided 0 < arg k, < x/2.
If C, represents the contour along the quarter circle of radius p, the integral
of equation (50), integrated over this contour, can now be wriiien as

Q) = 5 f awe""g(w)f du e exp (ikih + 9 VT = W)

F(u)H”’(h )

The integral over C’ in equation (53) converges uniformly as u approaches
infinity for any won C,. C’isnot a function of w and g(w) is bounded. It follows
that the order of integration can be interchanged for any finite p, and we need
only show that

11ml

lim 5 [ du \/——,F(u) f deo glu)e"™"

- exp {thy(k + 2 V1 — W1 H (kyru) = 0.

UThey aro not satisfied if arg k, > »/2; this is the reason why a line of reasoning stemming
from equation (43) was adopted.

(63)

(54)

-
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As p — o, Hi'(k,ru) can be replaced by its asymptotic expansion, for
any u on C’. uF(u)/Vv'1 — u’ is bounded. The limit as p — o is therefore
determined by the behavior of

(55) B(u) = thi[A(w) — ¢t

with A(u) defined by equation (19). Letting k, = pe”, it is evident that the
limit approaches 0 exponentiaiiy as p — ® providea

(56) —8in 6 Re A(u) — cos 6 9m A(u) + ¢;t8in 6 < 0

forall0 < 6 < »/2. But however, in Section III the contour C’ was so defined
that A(u) = d + i, where 9 > 0 for aii u on C’. Consequently equation (56)
issatisfied'’ whenever —d + ¢;t < 0. On the other hand whenever —d + ¢,t > 0,
there will be a continuous set of values of u on C’ for which, for a finite range of
angles 6, equation (56) is not satisfied. It follows, using equation (43), that the
contour can be closed in the upper half w-plane whenever ¢ < d/c, , and cannot
whenever ¢ > d/c, . 1n other words ¢,(t) of equation (49), like the geometrically
reflected ¢,(t), begins at ¢ = d/¢, and not before.

When r > a the contour C(k;) can be deformed into the contours C, and
C, of Figure 4 and finally into the contours C; and C; of Figure 5, since the asymp-
totic limits of C{ and C; are the same as C’, so that equations (51) and (52)
remain relevant. The integrals continue to be uniformly convergent, and the
argument goes just as above. The integral along C} leads to the same conclusion,
namely that the signal is received when ¢ = d/c, . The integral along C! leads
to equation (56) where in this case Re A(u) = ra + (z+h) V1 —~ ag, 8o that
along this path the signal is received only when

ttra+(z+h)v1—a5:PA+SB+zi§ (Figure 1).
C; (N Cy

That no poles are crossed deforming the contours when + < a, and that the
pole is crossed when r > a only when a < 8 < 1 and equation (30) is satisfied
is shown just as in Sections III and 1V. When ¢,(p) contributes, K, i replaced
ty its asymptotic expansion in equation {28) and it is found that ¢,(p) does not
contribute until ¢t equals (z + h)(1 — a’)"?/(1 — 8% That this time lies
between the times of appearance of the head wave and the directly reflected wave
follows from equation (30). Because this time involves 8, no simple geometrical
interpretation of ¢,(p) is possible.
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